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Working with Paul Erdős was like taking a walk in the

hills. Every time when I thought that we had achieved

our goal and deserved a rest, Paul pointed to the top of

another hill and off we would go.

– Fan Chung



The Erdős-Rényi Processes

Begin with empty graph on n vertices.
Each round add one randomly chosen edge
Erdős-Rényi Time: n

2 rounds is t = 1

PHASE TRANSITION at tc = 1

Modern: G (n, p) with p = t
n
.



The Erdős-Rényi Phase Transition

Subcritical
t < tc = 1
|C1| = O(ln n)
All C simple 1

1Simple = Tree or Unicylic



The Erdős-Rényi Phase Transition

Subcritical
t < tc = 1
|C1| = O(ln n)
All C simple 1

Supercritical
t > tc = 1
GIANT COMPONENT
|C1| = Θ(n)
Complex (= Not Simple)
All other C simple
All other |C | = O(ln n)

1Simple = Tree or Unicylic
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Caution: Double Limits!
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t = 1− ǫ
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All C simple



Phase Transition Near Criticality

Caution: Double Limits!

Barely Subcritical
t = 1− ǫ
|C1| = O(ǫ−2 ln n)
All C simple

Barely Supercritical
t > 1 + ǫ
GIANT COMPONENT
|C1| ∼ 2ǫn
Complex (= Not Simple)
All other C simple
|C2| = O(ǫ−2 ln n)



Galton-Watson Birth Process

Begin with Eve

Eve has Poisson mean λ children

All children same. Final tree T .

Subcritical
λ < λc = 1
T finite



Galton-Watson Birth Process

Begin with Eve

Eve has Poisson mean λ children

All children same. Final tree T .

Subcritical
λ < λc = 1
T finite

Supercritical
λ > λc = 1
INFINITE TREE
Pr[T =∞] > 1
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|T | heavy tail until Θ(ǫ−2)
Then exponential decay
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Galton-Watson Near Criticality

λ = λc ± ǫ = 1± ǫ

Barely Subcritical
λ = 1− ǫ
|T | heavy tail until Θ(ǫ−2)
Then exponential decay

Barely Supercritical
λ = 1 + ǫ
Pr[T =∞] ∼ 2ǫ
Duality
T finite like 1− ǫ

GW λ roughly |C | at time t = λ



A Useful Non-Rigorous Argument

Erdős-Rényi Process.

When C ,C ′ merge, S ← S + 2
n
|C | · |C ′|

S(t + 2
n
)− S(t) = 2

n

∑

C 6=C ′

|C |
n

|C ′|
n
|C | · |C ′|
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A Useful Non-Rigorous Argument

Erdős-Rényi Process.

When C ,C ′ merge, S ← S + 2
n
|C | · |C ′|

S(t + 2
n
)− S(t) = 2

n

∑

C 6=C ′

|C |
n

|C ′|
n
|C | · |C ′|

∼ 2
n

∑

C ,C ′ n−2|C |2 · |C ′|2 = 2
n
S2(t)

S ′(t) = S2(t), S(0) = 1

S(t) = (1− t)−1 Critical tc = 1 when S(t)→∞



Fictitious Continutation

X1,X2, . . . mutually independent, Xi ∼ Pois(λ)
i -th node has Xi children and dies
Yt = number of living children, Y0 = 1, Yt = Yt−1 + Xt − 1
Example: 2, 1, 0, 1, 0, 2, . . .
Alanna has Brenda and Colleen (X1 = 2,Y1 = 2)
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Fictitious Continutation

X1,X2, . . . mutually independent, Xi ∼ Pois(λ)
i -th node has Xi children and dies
Yt = number of living children, Y0 = 1, Yt = Yt−1 + Xt − 1
Example: 2, 1, 0, 1, 0, 2, . . .
Alanna has Brenda and Colleen (X1 = 2,Y1 = 2)
Brenda has Deidra(X2 = 1,Y2 = 2)
Colleen has no children (X3 = 0,Y3 = 1)
Deidra has Erin (X4 = 1,Y4 = 1)
Erin has no children (X5 = 0,Y5 = 0) T = 5
Fictitous Continuation (convenient!)
Fiona (no parent) has two children (X6 = 2,Y6 = 1))
Never Ends. T = min t with Xt = 0 (or T =∞)
History (X1, . . . ,Xt).



The Queue

Queue size Y0 = 1; Yt = Yt−1 + Xt − 1
Tree size T = Tλ: minimal t, Yt = 0. (Maybe T =∞.)
Theorem: (Proof later!)

Pr[Tλ = k] =
e−λk(λk)k−1

k!

Critical: Pr[T1 = k] ∼ (2π)−1/2k−3/2.
Heavy Tail. E [T1] =∞.
Comparing: Pr[Tλ = k] = Pr[T1 = k]λ−1(λe1−λ)k

NonCritical: λe1−λ < 1. Exponential tail.



Immortality

x = Pr[T =∞]
The Amazing Property: If Po(λ) children, each type σ with
probability pσ – equivalently Po(λxσ) children of type σ,
independently.

Infinite iff at least one child has infinite tree.

x = Pr[Po(λx) 6= 0] = 1− e−λx

Subcritical. λ < 1. x = Pr[T =∞] = 0.
Critical. λ = 1. x = Pr[T =∞] = 0, E [T ] =∞.
SuperCritical. λ > 1. x = Pr[T =∞] is positive solution to
equation.



Creating a Component

Initial t = 0: Queue Y0 = 1; Neutral N0 = n − 1.
BFS finds Xt new vertices and adds them to queue
Xt = BIN[Nt−1, p]; Yt = Yt−1 + Xt − 1; Nt = Nt − Nt−1 − Xt

Fictional Continuation
T = min t with Yt = 0. (Always T ≤ n.)
Component C (v) has size T .
Nt ∼ BIN[n − 1, (1 − p)t ] (BFS backwards)
History (X1, . . . ,XT )



Graphs Components & Galton-Watson

TGR := size of C (v) in G (n, λ
n
)

TPO := size of tree in Galton-Watson process
Poisson Property: For any constants c , k

lim
n→∞

Pr[BIN[n − c ,
λ

n
] = k] = Pr[Po(λ) = k]

Theorem: For any possible history H = (x1, . . . , xt) the limit, as
n→∞ of the probability of history H in the graph process is the
probability of history H is the Galton-Watson process.
Corollary: For any fixed λ, k

lim
n→∞

Pr[TGR = k] = Pr[TPO = k]



An Unusual Proof
Theorem:

Pr[Tλ = k] =
e−λk(λk)k−1

k!

Proof: In G (n, p) with p = λ
n

Pr[|C (v)| = k] =

(

n

k − 1

)

(1− p)k(n−k) Pr[G (k, p) connected]

For k fixed, p → 0

Pr[G (k, p) connected] ∼ kk−2pk−1

via Cayley’s Theorem.

lim
n→∞

(

n

k − 1

)

(1− p)k(n−k)kk−2pk−1 =
e−λk(λk)k−1

k!

and
Pr[Tλ = k] = lim

n→∞
Pr[|C (v)| = k]

gives the theorem!



Duality

d < 1 < c dual if de−d = ce−c

TPO
c conditioned on being finite is TPO

d .
Roughly: G (n, c

n
with giant component removed is G (m, d

m
).



A Convenience

In the graph process:
To avoid technical calculations we shall replace

BIN[Nt−1, p]

with
Po[Nt−1p]

in finding the number of “new” vertices.



The Subcritical Regime λ < 1

T = |C (v)| is stochastically dominated by taking
BIN[n − 1, p] ∼ Po[λ] new vertices at each step.
Pr[|C (v)| ≥ k] ≤ Pr[TPO

λ ≥ k] Exponential decay. For k = K ln n,

Pr[|C (v)| ≥ k] = o(n−1)

so that
|CMAX | ≤ K ln n



The Supercritical Regime λ > 1

The GIANT Component
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The Supercritical Regime λ > 1

The GIANT Component

EXISTENCE

UNIQUENESS



No Middle Ground
Fictional Continuation gives

Pr[|C (v)| = t] ≤ Pr[|Nt | = n− t] = Pr[BIN[n−1, (1−p)t ] = n− t]

Case I: t = o(n). 1− (1− p)t ∼ pt = λt/n.

Pr[BIN[n − 1, λt/n] ≤ t − 1] drops exponentially in t

For t ≥ K lnn, Pr[|C (v)| = t] = o(n−10) Case II: t ∼ yn.
1− (1− p)t ∼ 1− e−λy .

Pr[BIN[n − 1, 1− e−λy ] ∼ yn]is exponentially small

unless y = Pr[TPO
λ =∞].

Hence whp for all vertices v either

(SMALL)|C (v)| ≤ K ln n

or
(GIANT )|C (v)| ∼ yn



Sandwiching the Graph Process

Pr[|C (v)| ≥ t] is bounded from above by the Galton-Watson with
BIN[n − 1, p] children.
Pr[|C (v)| ≥ t] is bounded from below by the Galton-Watson with
BIN[n − t, p] children.
With t ≤ K ln n bounds asymptotic.

Pr[|C (v)| ≥ K ln n] ∼ Pr[TPO
λ ≥ K ln n] ∼ Pr[TPO

λ =∞] = y(λ)

S = number of v with C (v) SMALL. E [S ] ∼ (1− y)n.
Variance calculation: S ∼ (1− y)n whp.
If not SMALL then GIANT.
Conclusion: There exists a unique GIANT component of size
∼ yn and all other components are SMALL.
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Each round randomly chosen edge {v ,w}
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The Bohman-Frieze Process

Begin with empty graph on n vertices.

Each round randomly chosen edge {v ,w}

IF v ,w both isolated, add edge {v ,w}

ELSE, add another randomly chosen edge {v ′,w ′}

Example of Achlioptas process.

Power of choice.
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◮ Erdős-Rényi beginning at reasonable H



Other Examples

◮ Erdős-Rényi beginning at reasonable H

◮ Bounded Size Achlioptas Rules



Other Examples

◮ Erdős-Rényi beginning at reasonable H

◮ Bounded Size Achlioptas Rules

◮ Preference for low degree vertices



Other Examples

◮ Erdős-Rényi beginning at reasonable H

◮ Bounded Size Achlioptas Rules

◮ Preference for low degree vertices

◮ ???



Susceptibility

S(G ) =
1

n

∑

C

|C |2 = E [|C (v)|]

Infinite Grid: χ = E [|C (~0)|]

S(t) is S(G ) at time t.
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Susceptibility for Bohman-Frieze

x1(t): proportion of isolated vertices

x1(t + 2
n
)− x1(t) = − x2

1 (t) 2
n
− (1− x2

1 (t))2x1(t)
n

Select first edge, x1 ← x1 −
2
n

Select second random edge, x1 ← x1 −
2x1
n

x ′
1 = −x2

1 − (1− x2
1 )(x1). x1(0) = 1. Smooth function.



Susceptibility for Bohman-Frieze II

S(t + 2
n
)− S(t) =



Susceptibility for Bohman-Frieze II

S(t + 2
n
)− S(t) = x2

1 (t) 2
n

Select first edge, S ← S + 2
n



Susceptibility for Bohman-Frieze II

S(t + 2
n
)− S(t) = x2

1 (t) 2
n

+ (1− x2
1 (t))2S2(t)

n

Select first edge, S ← S + 2
n

Select second random edge, S ← S + 2S2

n



Susceptibility for Bohman-Frieze II

S(t + 2
n
)− S(t) = x2

1 (t) 2
n

+ (1− x2
1 (t))2S2(t)

n

Select first edge, S ← S + 2
n

Select second random edge, S ← S + 2S2

n

S ′ = −x2
1 (1)− (1− x2

1 (t))S2. S(0) = 1. Explodes at tc ∼ 1.1763

Theorem: (Wormald-JS) Giant Component appears at tc .

Analogue: pc for E [|C (~0)|] =∞ same as pc for infinite component.



Comstock grins and says, “You sound awfully sure of

yourself, Waterhouse! I wonder if you can get me to feel

that same level of confidence.”

Waterhouse frowns at the coffee mug. “Well, it’s all in

the math,” he says, “ If the math works, why then you

should be sure of yourself. That’s the whole point of

math.”

from Cryptonomicon by Neal Stephenson


