The Erdős-Rényi Process Phase Transition
 Part I: The Coarse Scaling Random Graph Processes Austin

Joel Spencer

May 10,2016

Working with Paul Erdős was like taking a walk in the hills. Every time when I thought that we had achieved our goal and deserved a rest, Paul pointed to the top of another hill and off we would go.

- Fan Chung

The Erdős-Rényi Processes

Begin with empty graph on n vertices.
Each round add one randomly chosen edge
Erdős-Rényi Time: $\frac{n}{2}$ rounds is $t=1$

PHASE TRANSITION at $t_{c}=1$

Modern: $G(n, p)$ with $p=\frac{t}{n}$.

The Erdős-Rényi Phase Transition

Subcritical
$t<t_{c}=1$
$\left|C_{1}\right|=O(\ln n)$
All C simple ${ }^{1}$

The Erdős-Rényi Phase Transition

Supercritical
Subcritical
$t<t_{c}=1$
$\left|C_{1}\right|=O(\ln n)$
All C simple ${ }^{1}$
$t>t_{c}=1$
GIANT COMPONENT
$\left|C_{1}\right|=\Theta(n)$
Complex (= Not Simple)
All other C simple
All other $|C|=O(\ln n)$

Phase Transition Near Criticality

Caution: Double Limits!
Barely Subcritical
$t=1-\epsilon$
$\left|C_{1}\right|=O\left(\epsilon^{-2} \ln n\right)$
All C simple

Phase Transition Near Criticality

Caution: Double Limits!

Barely Subcritical
$t=1-\epsilon$
$\left|C_{1}\right|=O\left(\epsilon^{-2} \ln n\right)$
All C simple

Barely Supercritical
$t>1+\epsilon$
GIANT COMPONENT
$\left|C_{1}\right| \sim 2 \epsilon n$
Complex ($=$ Not Simple) All other C simple
$\left|C_{2}\right|=O\left(\epsilon^{-2} \ln n\right)$

Galton-Watson Birth Process

Begin with Eve

Eve has Poisson mean λ children

All children same. Final tree T.
Subcritical
$\lambda<\lambda_{c}=1$
T finite

Galton-Watson Birth Process

Begin with Eve

Eve has Poisson mean λ children

All children same. Final tree T.
Subcritical
$\lambda<\lambda_{c}=1$
T finite

Supercritical
$\lambda>\lambda_{c}=1$
INFINITE TREE
$\operatorname{Pr}[T=\infty]>1$

Galton-Watson Near Criticality

$$
\lambda=\lambda_{c} \pm \epsilon=1 \pm \epsilon
$$

Barely Subcritical
$\lambda=1-\epsilon$
$|T|$ heavy tail until $\Theta\left(\epsilon^{-2}\right)$
Then exponential decay

Galton-Watson Near Criticality

$$
\lambda=\lambda_{c} \pm \epsilon=1 \pm \epsilon
$$

Barely Subcritical
$\lambda=1-\epsilon$
$|T|$ heavy tail until $\Theta\left(\epsilon^{-2}\right)$
Then exponential decay

Barely Supercritical
$\lambda=1+\epsilon$
$\operatorname{Pr}[T=\infty] \sim 2 \epsilon$
Duality
T finite like $1-\epsilon$

Galton-Watson Near Criticality

$\lambda=\lambda_{c} \pm \epsilon=1 \pm \epsilon$
Barely Subcritical
$\lambda=1-\epsilon$
$|T|$ heavy tail until $\Theta\left(\epsilon^{-2}\right)$
Then exponential decay

Barely Supercritical
$\lambda=1+\epsilon$
$\operatorname{Pr}[T=\infty] \sim 2 \epsilon$
Duality
T finite like $1-\epsilon$

GW λ roughly $|C|$ at time $t=\lambda$

A Useful Non-Rigorous Argument

Erdős-Rényi Process.

When C, C^{\prime} merge, $S \leftarrow S+\frac{2}{n}|C| \cdot\left|C^{\prime}\right|$

$$
S\left(t+\frac{2}{n}\right)-S(t)=\frac{2}{n} \sum_{C \neq C^{\prime}} \frac{|C|}{n} \frac{\left|C^{\prime}\right|}{n}|C| \cdot\left|C^{\prime}\right|
$$

A Useful Non-Rigorous Argument

Erdős-Rényi Process.

When C, C^{\prime} merge, $S \leftarrow S+\frac{2}{n}|C| \cdot\left|C^{\prime}\right|$
$S\left(t+\frac{2}{n}\right)-S(t)=\frac{2}{n} \sum_{C \neq C^{\prime}} \frac{|C|}{n} \frac{\left|C^{\prime}\right|}{n}|C| \cdot\left|C^{\prime}\right|$
$\sim \frac{2}{n} \sum_{C, C^{\prime}} n^{-2}|C|^{2} \cdot\left|C^{\prime}\right|^{2}=\frac{2}{n} S^{2}(t)$

A Useful Non-Rigorous Argument

Erdős-Rényi Process.

When C, C^{\prime} merge, $S \leftarrow S+\frac{2}{n}|C| \cdot\left|C^{\prime}\right|$
$S\left(t+\frac{2}{n}\right)-S(t)=\frac{2}{n} \sum_{C \neq C^{\prime}} \frac{|C|}{n} \frac{\left|C^{\prime}\right|}{n}|C| \cdot\left|C^{\prime}\right|$
$\sim \frac{2}{n} \sum_{C, C^{\prime}} n^{-2}|C|^{2} \cdot\left|C^{\prime}\right|^{2}=\frac{2}{n} S^{2}(t)$
$S^{\prime}(t)=S^{2}(t), S(0)=1$
$S(t)=(1-t)^{-1}$

A Useful Non-Rigorous Argument

Erdős-Rényi Process.

When C, C^{\prime} merge, $S \leftarrow S+\frac{2}{n}|C| \cdot\left|C^{\prime}\right|$

$$
S\left(t+\frac{2}{n}\right)-S(t)=\frac{2}{n} \sum_{C \neq C^{\prime}} \frac{|C|}{n} \frac{\left|C^{\prime}\right|}{n}|C| \cdot\left|C^{\prime}\right|
$$

$\sim \frac{2}{n} \sum_{C, C^{\prime}} n^{-2}|C|^{2} \cdot\left|C^{\prime}\right|^{2}=\frac{2}{n} S^{2}(t)$
$S^{\prime}(t)=S^{2}(t), S(0)=1$
$S(t)=(1-t)^{-1}$ Critical $t_{c}=1$ when $S(t) \rightarrow \infty$

Fictitious Continutation

X_{1}, X_{2}, \ldots mutually independent, $X_{i} \sim \operatorname{Pois}(\lambda)$
i-th node has X_{i} children and dies
$Y_{t}=$ number of living children, $Y_{0}=1, Y_{t}=Y_{t-1}+X_{t}-1$
Example: 2, 1, $0,1,0,2, \ldots$
Alanna has Brenda and Colleen $\left(X_{1}=2, Y_{1}=2\right)$

Fictitious Continutation

X_{1}, X_{2}, \ldots mutually independent, $X_{i} \sim \operatorname{Pois}(\lambda)$
i-th node has X_{i} children and dies
$Y_{t}=$ number of living children, $Y_{0}=1, Y_{t}=Y_{t-1}+X_{t}-1$
Example: 2, 1, $0,1,0,2, \ldots$
Alanna has Brenda and Colleen ($X_{1}=2, Y_{1}=2$)
Brenda has Deidra $\left(X_{2}=1, Y_{2}=2\right)$

Fictitious Continutation

X_{1}, X_{2}, \ldots mutually independent, $X_{i} \sim \operatorname{Pois}(\lambda)$
i-th node has X_{i} children and dies
$Y_{t}=$ number of living children, $Y_{0}=1, Y_{t}=Y_{t-1}+X_{t}-1$
Example: 2, 1, $0,1,0,2, \ldots$
Alanna has Brenda and Colleen ($X_{1}=2, Y_{1}=2$)
Brenda has Deidra $\left(X_{2}=1, Y_{2}=2\right)$
Colleen has no children $\left(X_{3}=0, Y_{3}=1\right)$

Fictitious Continutation

X_{1}, X_{2}, \ldots mutually independent, $X_{i} \sim \operatorname{Pois}(\lambda)$
i-th node has X_{i} children and dies
$Y_{t}=$ number of living children, $Y_{0}=1, Y_{t}=Y_{t-1}+X_{t}-1$
Example: 2, 1, $0,1,0,2, \ldots$
Alanna has Brenda and Colleen ($X_{1}=2, Y_{1}=2$)
Brenda has Deidra $\left(X_{2}=1, Y_{2}=2\right)$
Colleen has no children $\left(X_{3}=0, Y_{3}=1\right)$
Deidra has Erin $\left(X_{4}=1, Y_{4}=1\right)$

Fictitious Continutation

X_{1}, X_{2}, \ldots mutually independent, $X_{i} \sim \operatorname{Pois}(\lambda)$
i-th node has X_{i} children and dies
$Y_{t}=$ number of living children, $Y_{0}=1, Y_{t}=Y_{t-1}+X_{t}-1$
Example: 2, 1, $0,1,0,2, \ldots$
Alanna has Brenda and Colleen ($X_{1}=2, Y_{1}=2$)
Brenda has Deidra $\left(X_{2}=1, Y_{2}=2\right)$
Colleen has no children $\left(X_{3}=0, Y_{3}=1\right)$
Deidra has Erin $\left(X_{4}=1, Y_{4}=1\right)$
Erin has no children $\left(X_{5}=0, Y_{5}=0\right) T=5$

Fictitious Continutation

X_{1}, X_{2}, \ldots mutually independent, $X_{i} \sim \operatorname{Pois}(\lambda)$
i-th node has X_{i} children and dies
$Y_{t}=$ number of living children, $Y_{0}=1, Y_{t}=Y_{t-1}+X_{t}-1$
Example: 2, 1, $0,1,0,2, \ldots$
Alanna has Brenda and Colleen ($X_{1}=2, Y_{1}=2$)
Brenda has Deidra $\left(X_{2}=1, Y_{2}=2\right)$
Colleen has no children $\left(X_{3}=0, Y_{3}=1\right)$
Deidra has Erin $\left(X_{4}=1, Y_{4}=1\right)$
Erin has no children $\left(X_{5}=0, Y_{5}=0\right) T=5$
Fictitous Continuation (convenient!)
Fiona (no parent) has two children $\left(X_{6}=2, Y_{6}=1\right)$)
Never Ends. $T=\min t$ with $X_{t}=0($ or $T=\infty)$
History $\left(X_{1}, \ldots, X_{t}\right)$.

The Queue

Queue size $Y_{0}=1 ; Y_{t}=Y_{t-1}+X_{t}-1$
Tree size $T=T_{\lambda}$: minimal $t, Y_{t}=0$. (Maybe $T=\infty$.)
Theorem: (Proof later!)

$$
\operatorname{Pr}\left[T_{\lambda}=k\right]=\frac{e^{-\lambda k}(\lambda k)^{k-1}}{k!}
$$

Critical: $\operatorname{Pr}\left[T_{1}=k\right] \sim(2 \pi)^{-1 / 2} k^{-3 / 2}$. Heavy Tail. $E\left[T_{1}\right]=\infty$.
Comparing: $\operatorname{Pr}\left[T_{\lambda}=k\right]=\operatorname{Pr}\left[T_{1}=k\right] \lambda^{-1}\left(\lambda e^{1-\lambda}\right)^{k}$
NonCritical: $\lambda e^{1-\lambda}<1$. Exponential tail.

Immortality

$x=\operatorname{Pr}[T=\infty]$
The Amazing Property: If $\operatorname{Po}(\lambda)$ children, each type σ with probability p_{σ} - equivalently $\operatorname{Po}\left(\lambda x_{\sigma}\right)$ children of type σ, independently.

Infinite iff at least one child has infinite tree.

$$
x=\operatorname{Pr}[\operatorname{Po}(\lambda x) \neq 0]=1-e^{-\lambda x}
$$

Subcritical. $\lambda<1 . x=\operatorname{Pr}[T=\infty]=0$.
Critical. $\lambda=1 . x=\operatorname{Pr}[T=\infty]=0, E[T]=\infty$.
SuperCritical. $\lambda>1 . x=\operatorname{Pr}[T=\infty]$ is positive solution to equation.

Creating a Component

Initial $t=0$: Queue $Y_{0}=1$; Neutral $N_{0}=n-1$.
BFS finds X_{t} new vertices and adds them to queue
$X_{t}=\operatorname{BIN}\left[N_{t-1}, p\right] ; Y_{t}=Y_{t-1}+X_{t}-1 ; N_{t}=N_{t}-N_{t-1}-X_{t}$
Fictional Continuation
$T=\min t$ with $Y_{t}=0$. (Always $T \leq n$.)
Component $C(v)$ has size T.
$N_{t} \sim \operatorname{BIN}\left[n-1,(1-p)^{t}\right]$ (BFS backwards)
History $\left(X_{1}, \ldots, X_{T}\right)$

Graphs Components \& Galton-Watson

$T^{G R}:=$ size of $C(v)$ in $G\left(n, \frac{\lambda}{n}\right)$
$T^{P O}:=$ size of tree in Galton-Watson process
Poisson Property: For any constants c, k

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left[B I N\left[n-c, \frac{\lambda}{n}\right]=k\right]=\operatorname{Pr}[\operatorname{Po}(\lambda)=k]
$$

Theorem: For any possible history $H=\left(x_{1}, \ldots, x_{t}\right)$ the limit, as $n \rightarrow \infty$ of the probability of history H in the graph process is the probability of history H is the Galton-Watson process.
Corollary: For any fixed λ, k

$$
\lim _{n \rightarrow \infty} \operatorname{Pr}\left[T^{G R}=k\right]=\operatorname{Pr}\left[T^{P O}=k\right]
$$

An Unusual Proof

Theorem:

$$
\operatorname{Pr}\left[T_{\lambda}=k\right]=\frac{e^{-\lambda k}(\lambda k)^{k-1}}{k!}
$$

Proof: $\ln G(n, p)$ with $p=\frac{\lambda}{n}$

$$
\operatorname{Pr}[|C(v)|=k]=\binom{n}{k-1}(1-p)^{k(n-k)} \operatorname{Pr}[G(k, p) \text { connected }]
$$

For k fixed, $p \rightarrow 0$

$$
\operatorname{Pr}[G(k, p) \text { connected }] \sim k^{k-2} p^{k-1}
$$

via Cayley's Theorem.

$$
\lim _{n \rightarrow \infty}\binom{n}{k-1}(1-p)^{k(n-k)} k^{k-2} p^{k-1}=\frac{e^{-\lambda k}(\lambda k)^{k-1}}{k!}
$$

and

$$
\operatorname{Pr}\left[T_{\lambda}=k\right]=\lim _{n \rightarrow \infty} \operatorname{Pr}[|C(v)|=k]
$$

gives the theorem!

Duality

$d<1<c$ dual if $d e^{-d}=c e^{-c}$
$T_{c}^{P O}$ conditioned on being finite is $T_{d}^{P O}$.
Roughly: $G\left(n, \frac{c}{n}\right.$ with giant component removed is $G\left(m, \frac{d}{m}\right)$.

A Convenience

In the graph process:
To avoid technical calculations we shall replace

$$
\operatorname{BI} N\left[N_{t-1}, p\right]
$$

with

$$
P o\left[N_{t-1} p\right]
$$

in finding the number of "new" vertices.

The Subcritical Regime $\lambda<1$

$T=|C(v)|$ is stochastically dominated by taking
$\operatorname{BIN}[n-1, p] \sim \operatorname{Po}[\lambda]$ new vertices at each step. $\operatorname{Pr}[|C(v)| \geq k] \leq \operatorname{Pr}\left[T_{\lambda}^{P O} \geq k\right]$ Exponential decay. For $k=K \ln n$,

$$
\operatorname{Pr}[|C(v)| \geq k]=o\left(n^{-1}\right)
$$

so that

$$
\left|C_{M A X}\right| \leq K \ln n
$$

The Supercritical Regime $\lambda>1$

The GIANT Component

The Supercritical Regime $\lambda>1$

The GIANT Component

EXISTENCE

The Supercritical Regime $\lambda>1$

The GIANT Component

EXISTENCE

UNIQUENESS

No Middle Ground

Fictional Continuation gives

$$
\operatorname{Pr}[|C(v)|=t] \leq \operatorname{Pr}\left[\left|N_{t}\right|=n-t\right]=\operatorname{Pr}\left[B I N\left[n-1,(1-p)^{t}\right]=n-t\right]
$$

Case I: $t=o(n) .1-(1-p)^{t} \sim p t=\lambda t / n$.
$\operatorname{Pr}[\operatorname{BIN}[n-1, \lambda t / n] \leq t-1]$ drops exponentially in t
For $t \geq K \ln n, \operatorname{Pr}[|C(v)|=t]=o\left(n^{-10}\right)$ Case II: $t \sim y n$. $1-(1-p)^{t} \sim 1-e^{-\lambda y}$.
$\operatorname{Pr}\left[\operatorname{BIN}\left[n-1,1-e^{-\lambda y}\right] \sim y n\right]$ is exponentially small
unless $y=\operatorname{Pr}\left[T_{\lambda}^{P O}=\infty\right]$.
Hence whp for all vertices v either

$$
(S M A L L)|C(v)| \leq K \ln n
$$

or

$$
(G I A N T)|C(v)| \sim y n
$$

Sandwiching the Graph Process

$\operatorname{Pr}[|C(v)| \geq t]$ is bounded from above by the Galton-Watson with $\operatorname{BIN}[n-1, p]$ children.
$\operatorname{Pr}[|C(v)| \geq t]$ is bounded from below by the Galton-Watson with $\operatorname{BIN}[n-t, p]$ children.
With $t \leq K \ln n$ bounds asymptotic.

$$
\operatorname{Pr}[|C(v)| \geq K \ln n] \sim \operatorname{Pr}\left[T_{\lambda}^{P O} \geq K \ln n\right] \sim \operatorname{Pr}\left[T_{\lambda}^{P O}=\infty\right]=y(\lambda)
$$

$S=$ number of v with $C(v)$ SMALL. $E[S] \sim(1-y) n$.
Variance calculation: $S \sim(1-y) n$ whp.
If not SMALL then GIANT.
Conclusion: There exists a unique GIANT component of size $\sim y n$ and all other components are SMALL.

The Bohman-Frieze Process

Begin with empty graph on n vertices.

Each round randomly chosen edge $\{v, w\}$

IF v, w both isolated, add edge $\{v, w\}$

The Bohman-Frieze Process

Begin with empty graph on n vertices.

Each round randomly chosen edge $\{v, w\}$

IF v, w both isolated, add edge $\{v, w\}$

ELSE, add another randomly chosen edge $\left\{v^{\prime}, w^{\prime}\right\}$

The Bohman-Frieze Process

Begin with empty graph on n vertices.

Each round randomly chosen edge $\{v, w\}$

IF v, w both isolated, add edge $\{v, w\}$

ELSE, add another randomly chosen edge $\left\{v^{\prime}, w^{\prime}\right\}$

Example of Achlioptas process.

Power of choice.

Other Examples

- Erdős-Rényi beginning at reasonable H

Other Examples

- Erdős-Rényi beginning at reasonable H
- Bounded Size Achlioptas Rules

Other Examples

- Erdős-Rényi beginning at reasonable H
- Bounded Size Achlioptas Rules
- Preference for low degree vertices

Other Examples

- Erdős-Rényi beginning at reasonable H
- Bounded Size Achlioptas Rules
- Preference for low degree vertices
- ???

Susceptibility

$$
S(G)=\frac{1}{n} \sum_{C}|C|^{2}=E[|C(v)|]
$$

Infinite Grid: $\chi=E[|C(\overrightarrow{0})|]$
$S(t)$ is $S(G)$ at time t.

Susceptibility for Bohman-Frieze

$x_{1}(t)$: proportion of isolated vertices

$$
x_{1}\left(t+\frac{2}{n}\right)-x_{1}(t)=
$$

Susceptibility for Bohman-Frieze

$x_{1}(t)$: proportion of isolated vertices

$$
x_{1}\left(t+\frac{2}{n}\right)-x_{1}(t)=-x_{1}^{2}(t) \frac{2}{n}
$$

Select first edge, $x_{1} \leftarrow x_{1}-\frac{2}{n}$

Susceptibility for Bohman-Frieze

$x_{1}(t)$: proportion of isolated vertices
$x_{1}\left(t+\frac{2}{n}\right)-x_{1}(t)=-x_{1}^{2}(t) \frac{2}{n}-\left(1-x_{1}^{2}(t)\right) \frac{2 x_{1}(t)}{n}$

Select first edge, $x_{1} \leftarrow x_{1}-\frac{2}{n}$

Select second random edge, $x_{1} \leftarrow x_{1}-\frac{2 x_{1}}{n}$

Susceptibility for Bohman-Frieze

$x_{1}(t)$: proportion of isolated vertices

$$
x_{1}\left(t+\frac{2}{n}\right)-x_{1}(t)=-x_{1}^{2}(t) \frac{2}{n}-\left(1-x_{1}^{2}(t)\right) \frac{2 x_{1}(t)}{n}
$$

Select first edge, $x_{1} \leftarrow x_{1}-\frac{2}{n}$

Select second random edge, $x_{1} \leftarrow x_{1}-\frac{2 x_{1}}{n}$

$$
x_{1}^{\prime}=-x_{1}^{2}-\left(1-x_{1}^{2}\right)\left(x_{1}\right) . x_{1}(0)=1 . \text { Smooth function. }
$$

Susceptibility for Bohman-Frieze II

$$
S\left(t+\frac{2}{n}\right)-S(t)=
$$

Susceptibility for Bohman-Frieze II

$$
S\left(t+\frac{2}{n}\right)-S(t)=x_{1}^{2}(t) \frac{2}{n}
$$

Select first edge, $S \leftarrow S+\frac{2}{n}$

Susceptibility for Bohman-Frieze II

$$
S\left(t+\frac{2}{n}\right)-S(t)=x_{1}^{2}(t) \frac{2}{n}+\left(1-x_{1}^{2}(t)\right) \frac{2 S^{2}(t)}{n}
$$

Select first edge, $S \leftarrow S+\frac{2}{n}$

Select second random edge, $S \leftarrow S+\frac{2 S^{2}}{n}$

Susceptibility for Bohman-Frieze II

$S\left(t+\frac{2}{n}\right)-S(t)=x_{1}^{2}(t) \frac{2}{n}+\left(1-x_{1}^{2}(t)\right) \frac{2 S^{2}(t)}{n}$
Select first edge, $S \leftarrow S+\frac{2}{n}$
Select second random edge, $S \leftarrow S+\frac{2 S^{2}}{n}$
$S^{\prime}=-x_{1}^{2}(1)-\left(1-x_{1}^{2}(t)\right) S^{2} . S(0)=1$. Explodes at $t_{c} \sim 1.1763$

Theorem: (Wormald-JS) Giant Component appears at t_{c}.

Analogue: p_{c} for $\left.E[\mid C(\overrightarrow{0})]\right]=\infty$ same as p_{c} for infinite component.

Comstock grins and says, "You sound awfully sure of yourself, Waterhouse! I wonder if you can get me to feel that same level of confidence."
Waterhouse frowns at the coffee mug. "Well, it's all in the math," he says, "If the math works, why then you should be sure of yourself. That's the whole point of math."
from Cryptonomicon by Neal Stephenson

