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Working with Paul Erdés was like taking a walk in the
hills. Every time when | thought that we had achieved
our goal and deserved a rest, Paul pointed to the top of
another hill and off we would go.

— Fan Chung



The Erdés-Rényi Processes

Begin with empty graph on n vertices.
Each round add one randomly chosen edge

Erdés-Rényi Time: 7 rounds is t =1

PHASE TRANSITION att. =1

t
n-

Modern: G(n, p) with p =



The Erdés-Rényi Phase Transition

Subcritical
t<t.=1
|G| = O(Inn)
All C simple !

!Simple = Tree or Unicylic



The Erdés-Rényi Phase Transition

Subcritical
t<te=1
|G| = O(Inn)
All C simple !

1Simple = Tree or Unicylic

Supercritical

t>t.=1

GIANT COMPONENT
|C1| = ©(n)

Complex (= Not Simple)
All other C simple

All other |C| = O(Inn)



Phase Transition Near Criticality

Caution: Double Limits!

Barely Subcritical
t=1—¢

|C1] = O(¢72Inn)
All C simple



Phase Transition Near Criticality

Caution: Double Limits!

Barely Supercritical

Barely Subcritical t>1+¢

t=1-—¢ GIANT COMPONENT
|C1| = O(e 2Inn) |C1| ~ 2¢n .

All C simple Complex (= Not Simple)

All other C simple
|G| = O(¢72Inn)



Galton-Watson Birth Process

Begin with Eve

Eve has Poisson mean \ children

All children same. Final tree T.
Subcritical
A< A =1
T finite



Galton-Watson Birth Process

Begin with Eve
Eve has Poisson mean A children

All children same. Final tree T.

Supercritical

SUbCfitiCB' )\ > )\c — 1
A<Ac=1 INFINITE TREE
T finite

Pr[T =o0] > 1



Galton-Watson Near Criticality

A=Acte=1%c¢
Barely Subcritical
A=1—¢
| T| heavy tail until ©(e?)
Then exponential decay



Galton-Watson Near Criticality

A=Ate=1+¢€

Barely Subcritical Barely Supercritical

A=1—¢ A=1+e
| T| heavy tail until ©(e?) EL[;; 0] ~ 2e

Then exponential decay T finite like 1
inite like 1 — ¢



Galton-Watson Near Criticality

A=Ate=1+¢€

Barely Subcritical Barely Supercritical

N1 A=1+4¢€

. : _ Pr[T = oo] ~ 2¢
T|h | until 2
| T| heavy tail until ©(e™7) Duality

Then exponential decay T finite like 1
inite li —€

GW X roughly |C| at time t = A



A Useful Non-Rigorous Argument

Erdés-Rényi Process.

When C, C’' merge, S < S+ 2|C| - |C/|

S(t+2)—S(t) =2 e G )
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A Useful Non-Rigorous Argument
Erdés-Rényi Process.
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A Useful Non-Rigorous Argument
Erdés-Rényi Process.
When C, C’' merge, S < S+ 2|C| - |C/|
S(t+2) = S(t) =2 Xz 5 5 1C1-1C
~2¥ o ?ICP O = 25%(t)
S'(t) = S?(t), S(0) =1

S(t) = (1—t)~! Critical t. = 1 when S(t) — oo



Fictitious Continutation

X1, X2, ... mutually independent, X; ~ Pois())

i-th node has X; children and dies

Y: = number of living children, Yo =1, Y= Y1+ X; — 1
Example: 2,1,0,1,0,2,...

Alanna has Brenda and Colleen (X; =2,Y; = 2)
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Fictitious Continutation

X1, X2, ... mutually independent, X; ~ Pois())

i-th node has X; children and dies

Y: = number of living children, Yo =1, Y= Y1+ X; — 1
Example: 2,1,0,1,0,2,...

Alanna has Brenda and Colleen (X; =2,Y; = 2)
Brenda has Deidra(X, = 1,Y> = 2)

Colleen has no children (X3 =0,Y3 =1)

Deidra has Erin (X4 =1,Yy = 1)

Erin has no children (Xs =0,Ys =0) T =5
Fictitous Continuation (convenient!)

Fiona (no parent) has two children (X5 = 2,Ys = 1))
Never Ends. T = min t with X; =0 (or T = o0)
History (X1,...,Xt).



The Queue

Queuesize Yo=1; Yei= Y1+ Xi =1
Tree size T = Ty: minimal t, Yy =0. (Maybe T = oc0.)
Theorem: (Proof later!)

e—)\k()\k)k—l

Pr(Ty=K =——7

Critical: Pr[Ty = k] ~ (21)"Y/2k=3/2,

Heavy Tail. E[T;] = 0.

Comparing: Pr[Ty = k] = Pr[Ty = k]A7I(hel M)k
NonCritical: el < 1. Exponential tail.



Immortality

x =Pr[T = x]
The Amazing Property: If Po(\) children, each type o with

probability p, — equivalently Po(Ax,) children of type o,
independently.

Infinite iff at least one child has infinite tree.

x = Pr[Po(Ax) #0] =1 — ™™

Subcritical. A < 1. x = Pr[T = o0] = 0.

Critical. A=1. x =Pr[T = 00| =0, E[T] = 0.
SuperCritical. A > 1. x = Pr[T = o] is positive solution to
equation.



Creating a Component

Initial t = 0: Queue Yy = 1; Neutral Np = n— 1.

BFS finds X; new vertices and adds them to queue

X = BIN[Nt—l,P]§ Ye=Yi1+Xe =1, Ne = Ng — Nep — Xi
Fictional Continuation

T = min t with Y; = 0. (Always T < n.)

Component C(v) has size T.

N ~ BIN[n — 1,(1 — p)*] (BFS backwards)

History (X1,...,X71)



Graphs Components & Galton-Watson

TCR := size of C(v) in G(n,2)
TPO .= size of tree in Galton-Watson process
Poisson Property: For any constants c, k

nll_)ngo Pr[BIN[n — c, %] = k] = Pr[Po()\) = k]

Theorem: For any possible history H = (xq, ..., ) the limit, as
n — oo of the probability of history H in the graph process is the
probability of history H is the Galton-Watson process.

Corollary: For any fixed A, k

lim Pr[TER = k] = Pr[TPO = 4]
n—oo



An Unusual Proof

Theorem:
e—)\k()\k)k—l

PriTy =K =——F

Proof: In G(n, p) with p = 2

Pr[|C(v)| = k] = <k Z 1>(1 — p)(=K) Pr[G(k, p) connected]

For k fixed, p — 0
Pr[G(k, p) connected] ~ kk—2pk—1
via Cayley's Theorem.

.y k—1
. n _ o\k(n—k) k=2 k-1 _ € (Ak)
lim (k—1>(1 p) k"“p i

n—oo

and
Pr[Ty=k] = nll_)ngo Pr[|C(v)| = k]

gives the theorem!



Duality

d<1<cdualifde™? =ce ¢
TFO conditioned on being finite is TF©.
Roughly: G(n, £ with giant component removed is G(m, %)



A Convenience

In the graph process:
To avoid technical calculations we shall replace

BIN[N;_1, p]

with
Po[N;_1p]

in finding the number of “new” vertices.



The Subcritical Regime A <1

T = |C(v)| is stochastically dominated by taking
BIN[n — 1, p] ~ Po[A] new vertices at each step.
Pr[|C(v)| > k] < Pr[TfO > k] Exponential decay. For k = K Inn,

PrIC(v)| > k] = o(n™")

so that
|Cuvax| < Klinn



The Supercritical Regime A > 1

The GIANT Component



The Supercritical Regime A > 1

The GIANT Component

EXISTENCE



The Supercritical Regime A > 1

The GIANT Component

EXISTENCE

UNIQUENESS



No Middle Ground

Fictional Continuation gives
Pr[|C(v)| = t] < Pr[[N;| = n—t] = Pr[BIN[n—1,(1—p)'] = n—t]
Case I: t=o(n). 1—(1—p)' ~ pt=At/n.

Pr[BIN[n — 1, At/n] < t — 1] drops exponentially in t

For t > Klnn, Pr[|C(v)| = t] = o(n™1) Case II: t~ yn.
1-(1-p)f~1—eV.

Pr[BIN[n — 1,1 — e ] ~ yn]is exponentially small

unless y = Pr[T{9 = .
Hence whp for all vertices v either

(SMALL)|C(v)| < KlInn

or
(GIANT)|C(v)| ~ yn



Sandwiching the Graph Process

Pr[|C(v)| > t] is bounded from above by the Galton-Watson with
BIN[n — 1, p] children.

Pr[|C(v)| > t] is bounded from below by the Galton-Watson with
BIN[n — t, p] children.

With t < K In n bounds asymptotic.

Pr[|C(v)| > KInn] ~ Pr[T{C > Kinn] ~ Pr[T{° = o0] = y()\)

S = number of v with C(v) SMALL. E[S] ~ (1 — y)n.
Variance calculation: S ~ (1 — y)n whp.

If not SMALL then GIANT.

Conclusion: There exists a unique GIANT component of size
~ yn and all other components are SMALL.



The Bohman-Frieze Process

Begin with empty graph on n vertices.

Each round randomly chosen edge {v, w}

IF v, w both isolated, add edge {v,w}
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IF v, w both isolated, add edge {v,w}

ELSE, add another randomly chosen edge {v/, w'}



The Bohman-Frieze Process

Begin with empty graph on n vertices.

Each round randomly chosen edge {v, w}

IF v, w both isolated, add edge {v,w}

ELSE, add another randomly chosen edge {v/, w'}
Example of Achlioptas process.

Power of choice.



Other Examples

» Erdds-Rényi beginning at reasonable H
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» Preference for low degree vertices



Other Examples

Erdés-Rényi beginning at reasonable H
Bounded Size Achlioptas Rules

Preference for low degree vertices
77

vV v v Vv



Susceptibility

Z\CF E(C()]

Infinite Grid: x = E[|C(6)|]

S(t) is S(G) at time t.



Susceptibility for Bohman-Frieze

x1(t): proportion of isolated vertices

Xl(t + %) — Xl(t') =



Susceptibility for Bohman-Frieze

x1(t): proportion of isolated vertices
xa(t+ %) —xa(t) = —xf(t)5

Select first edge, x; «— x1 — %



Susceptibility for Bohman-Frieze

x1(t): proportion of isolated vertices

x(t + %) —x(t)= — xlz(t)2 —(1- X12(t))2X1—n(t)

n

2

Select first edge, x; < x1 —

2x1

Select second random edge, x1 « x1 — =



Susceptibility for Bohman-Frieze

x1(t): proportion of isolated vertices

xi(t+2)—x(t)= —x2(t)2 — (1 - X12(t))2X1—n(t)

Select first edge, x; «— x1 — %

Select second random edge, x; «— x1 — 2—;7‘1

xj = —x? — (1 = x2)(x1). x1(0) = 1. Smooth function.



Susceptibility for Bohman-Frieze |l

S(t+2)—5S(t)=



Susceptibility for Bohman-Frieze

S(t+2) = (1) = (22

Select first edge, S — S + 2



Susceptibility for Bohman-Frieze |l

S(t+2) = (1) = x¢(£)2 + (1 — (1) =1

n

Select first edge, S — S + 2

Select second random edge, S — S + 2—;7';2



Susceptibility for Bohman-Frieze |l

S(t+2) = S(t) = x2(D)2 + (1 — x (1) 221

Select first edge, S — S + %

Select second random edge, S — S + 2—;?2

S' = —x3(1) — (1 — x2(t))S2. S(0) = 1. Explodes at t. ~ 1.1763
Theorem: (Wormald-JS) Giant Component appears at t..

Analogue: p. for E[|C(0)|] = oo pc for infinite component.



Comstock grins and says, “You sound awfully sure of
yourself, Waterhouse! | wonder if you can get me to feel
that same level of confidence.”

Waterhouse frowns at the coffee mug. “Well, it's all in
the math,” he says, “ If the math works, why then you
should be sure of yourself. That's the whole point of
math.”

from Cryptonomicon by Neal Stephenson



