The Erdős-Rényi Process Phase Transition Part I: The Coarse Scaling Random Graph Processes Austin

Joel Spencer

May 10,2016

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● ○○

Working with Paul Erdős was like taking a walk in the hills. Every time when I thought that we had achieved our goal and deserved a rest, Paul pointed to the top of another hill and off we would go.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

– Fan Chung

# The Erdős-Rényi Processes

Begin with empty graph on *n* vertices. Each round add one randomly chosen edge Erdős-Rényi Time:  $\frac{n}{2}$  rounds is t = 1

# PHASE TRANSITION at $t_c = 1$

▲日▼▲□▼▲□▼▲□▼ □ ののの

Modern: G(n, p) with  $p = \frac{t}{n}$ .

# The Erdős-Rényi Phase Transition

Subcritical  $t < t_c = 1$   $|C_1| = O(\ln n)$ All C simple <sup>1</sup>

<sup>1</sup>Simple = Tree or Unicylic

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

# The Erdős-Rényi Phase Transition

 $\begin{aligned} & \text{Subcritical} \\ & t < t_c = 1 \\ & |C_1| = O(\ln n) \\ & \text{All } C \text{ simple }^1 \end{aligned}$ 

Supercritical  $t > t_c = 1$ GIANT COMPONENT  $|C_1| = \Theta(n)$ Complex (= Not Simple) All other C simple All other  $|C| = O(\ln n)$ 

<sup>&</sup>lt;sup>1</sup>Simple = Tree or Unicylic

Phase Transition Near Criticality

Caution: Double Limits!

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Barely Subcritical  $t = 1 - \epsilon$   $|C_1| = O(\epsilon^{-2} \ln n)$ All *C* simple Phase Transition Near Criticality

Caution: Double Limits!

Barely Subcritical  $t = 1 - \epsilon$   $|C_1| = O(\epsilon^{-2} \ln n)$ All *C* simple Barely Supercritical  $t > 1 + \epsilon$ GIANT COMPONENT  $|C_1| \sim 2\epsilon n$ Complex (= Not Simple) All other C simple  $|C_2| = O(\epsilon^{-2} \ln n)$ 

▲日▼▲□▼▲□▼▲□▼ □ ののの

Galton-Watson Birth Process

Begin with Eve

Eve has Poisson mean  $\lambda$  children

All children same. Final tree T. Subcritical  $\lambda < \lambda_c = 1$ 

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

T finite

Galton-Watson Birth Process

Begin with Eve

Eve has Poisson mean  $\lambda$  children

All children same. Final tree T.

Subcritical  $\lambda < \lambda_c = 1$ 

T finite

Supercritical  $\lambda > \lambda_c = 1$ INFINITE TREE  $\Pr[T = \infty] > 1$ 

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

# Galton-Watson Near Criticality

$$\begin{split} \lambda &= \lambda_c \pm \epsilon = 1 \pm \epsilon \\ \text{Barely Subcritical} \\ \lambda &= 1 - \epsilon \\ |T| \text{ heavy tail until } \Theta(\epsilon^{-2}) \\ \text{Then exponential decay} \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

# Galton-Watson Near Criticality

$$\lambda = \lambda_{\rm c} \pm \epsilon = 1 \pm \epsilon$$

Barely Subcritical  $\lambda = 1 - \epsilon$  |T| heavy tail until  $\Theta(\epsilon^{-2})$ Then exponential decay Barely Supercritical  $\lambda = 1 + \epsilon$   $\Pr[T = \infty] \sim 2\epsilon$ Duality T finite like  $1 - \epsilon$ 

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

# Galton-Watson Near Criticality

$$\lambda = \lambda_c \pm \epsilon = 1 \pm \epsilon$$

Barely Subcritical  $\lambda = 1 - \epsilon$  |T| heavy tail until  $\Theta(\epsilon^{-2})$ Then exponential decay Barely Supercritical  $\lambda = 1 + \epsilon$   $\Pr[T = \infty] \sim 2\epsilon$ Duality *T* finite like  $1 - \epsilon$ 

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

GW  $\lambda$  roughly |C| at time  $t = \lambda$ 

Erdős-Rényi Process.

When C, C' merge,  $S \leftarrow S + \frac{2}{n}|C| \cdot |C'|$ 

$$S(t+\frac{2}{n})-S(t)=\frac{2}{n}\sum_{C\neq C'}\frac{|C|}{n}\frac{|C'|}{n}|C|\cdot|C'|$$

Erdős-Rényi Process.

When C, C' merge,  $S \leftarrow S + \frac{2}{n}|C| \cdot |C'|$ 

$$S(t+\frac{2}{n})-S(t)=\frac{2}{n}\sum_{C\neq C'}\frac{|C|}{n}\frac{|C'|}{n}|C|\cdot|C'|$$

$$\sim \frac{2}{n} \sum_{C,C'} n^{-2} |C|^2 \cdot |C'|^2 = \frac{2}{n} S^2(t)$$

Erdős-Rényi Process.

When C, C' merge,  $S \leftarrow S + \frac{2}{n}|C| \cdot |C'|$ 

$$S(t+\frac{2}{n})-S(t)=\frac{2}{n}\sum_{C\neq C'}\frac{|C|}{n}\frac{|C'|}{n}|C|\cdot|C'|$$

$$\sim \frac{2}{n} \sum_{C,C'} n^{-2} |C|^2 \cdot |C'|^2 = \frac{2}{n} S^2(t)$$

$$S'(t) = S^2(t), \ S(0) = 1$$

$$S(t) = (1-t)^{-1}$$

Erdős-Rényi Process.

When C, C' merge,  $S \leftarrow S + \frac{2}{n}|C| \cdot |C'|$ 

$$S(t + \frac{2}{n}) - S(t) = \frac{2}{n} \sum_{C \neq C'} \frac{|C|}{n} \frac{|C'|}{n} |C| \cdot |C'|$$

$$\sim \frac{2}{n} \sum_{C,C'} n^{-2} |C|^2 \cdot |C'|^2 = \frac{2}{n} S^2(t)$$

$$S'(t) = S^2(t), \ S(0) = 1$$

$$S(t) = (1-t)^{-1}$$
 Critical  $t_c = 1$  when  $S(t) 
ightarrow \infty$ 

 $X_1, X_2, \ldots$  mutually independent,  $X_i \sim Pois(\lambda)$ *i*-th node has  $X_i$  children and dies  $Y_t$  = number of living children,  $Y_0 = 1$ ,  $Y_t = Y_{t-1} + X_t - 1$ Example: 2,1,0,1,0,2,... Alanna has Brenda and Colleen ( $X_1 = 2, Y_1 = 2$ )

 $X_1, X_2, \ldots$  mutually independent,  $X_i \sim Pois(\lambda)$ *i*-th node has  $X_i$  children and dies  $Y_t =$  number of living children,  $Y_0 = 1$ ,  $Y_t = Y_{t-1} + X_t - 1$ Example: 2,1,0,1,0,2,... Alanna has Brenda and Colleen ( $X_1 = 2, Y_1 = 2$ ) Brenda has Deidra( $X_2 = 1, Y_2 = 2$ )

 $X_1, X_2, \ldots$  mutually independent,  $X_i \sim Pois(\lambda)$ *i*-th node has  $X_i$  children and dies  $Y_t$  = number of living children,  $Y_0 = 1$ ,  $Y_t = Y_{t-1} + X_t - 1$ Example: 2, 1, 0, 1, 0, 2, ... Alanna has Brenda and Colleen ( $X_1 = 2, Y_1 = 2$ ) Brenda has Deidra( $X_2 = 1, Y_2 = 2$ ) Colleen has no children ( $X_3 = 0, Y_3 = 1$ )

 $X_1, X_2, \ldots$  mutually independent,  $X_i \sim Pois(\lambda)$ *i*-th node has  $X_i$  children and dies  $Y_t$  = number of living children,  $Y_0 = 1$ ,  $Y_t = Y_{t-1} + X_t - 1$ Example: 2,1,0,1,0,2,... Alanna has Brenda and Colleen ( $X_1 = 2, Y_1 = 2$ ) Brenda has Deidra( $X_2 = 1, Y_2 = 2$ ) Colleen has no children ( $X_3 = 0, Y_3 = 1$ ) Deidra has Erin ( $X_4 = 1, Y_4 = 1$ )

 $X_1, X_2, \ldots$  mutually independent,  $X_i \sim Pois(\lambda)$ *i*-th node has  $X_i$  children and dies  $Y_t =$  number of living children,  $Y_0 = 1$ ,  $Y_t = Y_{t-1} + X_t - 1$ Example: 2,1,0,1,0,2,... Alanna has Brenda and Colleen ( $X_1 = 2, Y_1 = 2$ ) Brenda has Deidra( $X_2 = 1, Y_2 = 2$ ) Colleen has no children ( $X_3 = 0, Y_3 = 1$ ) Deidra has Erin ( $X_4 = 1, Y_4 = 1$ ) Erin has no children ( $X_5 = 0, Y_5 = 0$ ) T = 5

 $X_1, X_2, \ldots$  mutually independent,  $X_i \sim Pois(\lambda)$ *i*-th node has X<sub>i</sub> children and dies  $Y_t$  = number of living children,  $Y_0 = 1$ ,  $Y_t = Y_{t-1} + X_t - 1$ Example: 2, 1, 0, 1, 0, 2, ... Alanna has Brenda and Colleen  $(X_1 = 2, Y_1 = 2)$ Brenda has Deidra $(X_2 = 1, Y_2 = 2)$ Colleen has no children  $(X_3 = 0, Y_3 = 1)$ Deidra has Erin  $(X_4 = 1, Y_4 = 1)$ Erin has no children  $(X_5 = 0, Y_5 = 0)$  T = 5Fictitous Continuation (convenient!) Fiona (no parent) has two children  $(X_6 = 2, Y_6 = 1))$ Never Ends.  $T = \min t$  with  $X_t = 0$  (or  $T = \infty$ ) History  $(X_1, \ldots, X_t)$ .

#### The Queue

Queue size  $Y_0 = 1$ ;  $Y_t = Y_{t-1} + X_t - 1$ Tree size  $T = T_{\lambda}$ : minimal t,  $Y_t = 0$ . (Maybe  $T = \infty$ .) **Theorem:** (Proof later!)

$$\Pr[T_{\lambda} = k] = \frac{e^{-\lambda k} (\lambda k)^{k-1}}{k!}$$

▲日▼▲□▼▲□▼▲□▼ □ ののの

Critical:  $\Pr[T_1 = k] \sim (2\pi)^{-1/2} k^{-3/2}$ . Heavy Tail.  $E[T_1] = \infty$ . Comparing:  $\Pr[T_{\lambda} = k] = \Pr[T_1 = k] \lambda^{-1} (\lambda e^{1-\lambda})^k$ NonCritical:  $\lambda e^{1-\lambda} < 1$ . Exponential tail.

#### Immortality

 $x = \Pr[T = \infty]$ The Amazing Property: If  $Po(\lambda)$  children, each type  $\sigma$  with probability  $p_{\sigma}$  – equivalently  $Po(\lambda x_{\sigma})$  children of type  $\sigma$ , independently.

Infinite iff at least one child has infinite tree.

$$x = \Pr[Po(\lambda x) \neq 0] = 1 - e^{-\lambda x}$$

Subcritical.  $\lambda < 1$ .  $x = \Pr[T = \infty] = 0$ . Critical.  $\lambda = 1$ .  $x = \Pr[T = \infty] = 0$ ,  $E[T] = \infty$ . SuperCritical.  $\lambda > 1$ .  $x = \Pr[T = \infty]$  is positive solution to equation.

# Creating a Component

Initial t = 0: Queue  $Y_0 = 1$ ; Neutral  $N_0 = n - 1$ . BFS finds  $X_t$  new vertices and adds them to queue  $X_t = BIN[N_{t-1}, p]$ ;  $Y_t = Y_{t-1} + X_t - 1$ ;  $N_t = N_t - N_{t-1} - X_t$ Fictional Continuation  $T = \min t$  with  $Y_t = 0$ . (Always  $T \le n$ .) Component C(v) has size T.  $N_t \sim BIN[n-1, (1-p)^t]$  (BFS backwards) History  $(X_1, \ldots, X_T)$ 

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

### Graphs Components & Galton-Watson

 $T^{GR} := \text{size of } C(v) \text{ in } G(n, \frac{\lambda}{n})$  $T^{PO} := \text{size of tree in Galton-Watson process}$ Poisson Property: For any *constants* c, k

$$\lim_{n\to\infty} \Pr[BIN[n-c,\frac{\lambda}{n}]=k] = \Pr[Po(\lambda)=k]$$

**Theorem:** For any possible history  $H = (x_1, \ldots, x_t)$  the limit, as  $n \to \infty$  of the probability of history H in the graph process is the probability of history H is the Galton-Watson process. **Corollary:** For any *fixed*  $\lambda, k$ 

$$\lim_{n\to\infty} \Pr[T^{GR} = k] = \Pr[T^{PO} = k]$$

# An Unusual Proof

Theorem:

$$\Pr[T_{\lambda} = k] = \frac{e^{-\lambda k} (\lambda k)^{k-1}}{k!}$$

**Proof:** In G(n, p) with  $p = \frac{\lambda}{n}$ 

$$\Pr[|C(v)| = k] = \binom{n}{k-1} (1-p)^{k(n-k)} \Pr[G(k,p) \text{ connected}]$$

For k fixed,  $p \rightarrow 0$ 

$$\mathsf{Pr}[G(k, p) ext{ connected}] \sim k^{k-2} p^{k-1}$$

via Cayley's Theorem.

$$\lim_{n \to \infty} \binom{n}{k-1} (1-p)^{k(n-k)} k^{k-2} p^{k-1} = \frac{e^{-\lambda k} (\lambda k)^{k-1}}{k!}$$

and

$$\Pr[T_{\lambda} = k] = \lim_{n \to \infty} \Pr[|C(v)| = k]$$

gives the theorem!

## Duality

d < 1 < c dual if  $de^{-d} = ce^{-c}$  $T_c^{PO}$  conditioned on being finite is  $T_d^{PO}$ . Roughly:  $G(n, \frac{c}{n}$  with giant component removed is  $G(m, \frac{d}{m})$ .

# A Convenience

#### In the graph process: To avoid technical calculations we shall replace

#### $BIN[N_{t-1},p]$

with

$$Po[N_{t-1}p]$$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

in finding the number of "new" vertices.

#### The Subcritical Regime $\lambda < 1$

$$\begin{split} T &= |\mathcal{C}(v)| \text{ is stochastically dominated by taking} \\ BIN[n-1,p] &\sim Po[\lambda] \text{ new vertices at each step.} \\ \Pr[|\mathcal{C}(v)| \geq k] \leq \Pr[\mathcal{T}_{\lambda}^{PO} \geq k] \text{ Exponential decay. For } k = K \ln n, \end{split}$$

$$\Pr[|C(v)| \ge k] = o(n^{-1})$$

so that

 $|C_{MAX}| \leq K \ln n$ 

The Supercritical Regime  $\lambda > 1$ 

The **GIANT** Component

The Supercritical Regime  $\lambda > 1$ 

The **GIANT** Component

#### EXISTENCE

The Supercritical Regime  $\lambda > 1$ 

The **GIANT** Component

#### EXISTENCE

#### UNIQUENESS

# No Middle Ground

Fictional Continuation gives

 $\Pr[|C(v)| = t] \le \Pr[|N_t| = n - t] = \Pr[BIN[n - 1, (1 - p)^t] = n - t]$ Case I: t = o(n).  $1 - (1 - p)^t \sim pt = \lambda t/n$ .  $\Pr[BIN[n-1, \lambda t/n] < t-1]$  drops exponentially in t For  $t \geq K \ln n$ ,  $\Pr[|C(v)| = t] = o(n^{-10})$  Case II:  $t \sim vn$ .  $(1-(1-p)^t \sim 1-e^{-\lambda y})$  $\Pr[BIN[n-1, 1-e^{-\lambda y}] \sim yn]$  is exponentially small unless  $y = \Pr[T_{\lambda}^{PO} = \infty].$ Hence whp for all vertices v either

$$(SMALL)|C(v)| \leq K \ln n$$

or

 $(GIANT)|C(v)| \sim yn$ 

## Sandwiching the Graph Process

 $\Pr[|C(v)| \ge t]$  is bounded from *above* by the Galton-Watson with BIN[n-1,p] children.  $\Pr[|C(v)| \ge t]$  is bounded from *below* by the Galton-Watson with BIN[n-t,p] children. With  $t \le K \ln n$  bounds asymptotic.

$$\Pr[|\mathcal{C}(v)| \geq K \ln n] \sim \Pr[\mathcal{T}_{\lambda}^{PO} \geq K \ln n] \sim \Pr[\mathcal{T}_{\lambda}^{PO} = \infty] = y(\lambda)$$

S = number of v with C(v) SMALL.  $E[S] \sim (1 - y)n$ . Variance calculation:  $S \sim (1 - y)n$  whp. If not SMALL then GIANT.

Conclusion: There exists a unique GIANT component of size  $\sim$  yn and all other components are SMALL.

## The Bohman-Frieze Process

Begin with empty graph on n vertices.

Each round randomly chosen edge  $\{v, w\}$ 

IF v, w both isolated, add edge  $\{v, w\}$ 

### The Bohman-Frieze Process

Begin with empty graph on n vertices.

Each round randomly chosen edge  $\{v, w\}$ 

IF v, w both isolated, add edge  $\{v, w\}$ 

ELSE, add another randomly chosen edge  $\{v', w'\}$ 

## The Bohman-Frieze Process

Begin with empty graph on n vertices.

Each round randomly chosen edge  $\{v, w\}$ 

IF v, w both isolated, add edge  $\{v, w\}$ 

ELSE, add another randomly chosen edge  $\{v', w'\}$ 

Example of Achlioptas process.

Power of choice.

Erdős-Rényi beginning at reasonable H

Erdős-Rényi beginning at reasonable H

Bounded Size Achlioptas Rules

Erdős-Rényi beginning at reasonable H

- Bounded Size Achlioptas Rules
- Preference for low degree vertices

Erdős-Rényi beginning at reasonable H

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

- Bounded Size Achlioptas Rules
- Preference for low degree vertices
- ▶ ???

# Susceptibility

$$S(G) = \frac{1}{n} \sum_{C} |C|^2 = E[|C(v)|]$$

Infinite Grid: 
$$\chi = E[|C(\vec{0})|]$$

S(t) is S(G) at time t.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□▶

 $x_1(t)$ : proportion of isolated vertices

$$x_1(t+\frac{2}{n})-x_1(t)=$$

 $x_1(t)$ : proportion of isolated vertices

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

$$x_1(t+\frac{2}{n})-x_1(t)=-x_1^2(t)\frac{2}{n}$$

Select first edge,  $x_1 \leftarrow x_1 - \frac{2}{n}$ 

 $x_1(t)$ : proportion of isolated vertices

$$x_1(t+rac{2}{n})-x_1(t)=-x_1^2(t)rac{2}{n}-(1-x_1^2(t))rac{2x_1(t)}{n}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Select first edge,  $x_1 \leftarrow x_1 - \frac{2}{n}$ 

Select second random edge,  $x_1 \leftarrow x_1 - \frac{2x_1}{n}$ 

 $x_1(t)$ : proportion of isolated vertices

$$x_1(t+rac{2}{n})-x_1(t)=-x_1^2(t)rac{2}{n}-(1-x_1^2(t))rac{2x_1(t)}{n}$$

Select first edge,  $x_1 \leftarrow x_1 - \frac{2}{n}$ 

Select second random edge,  $x_1 \leftarrow x_1 - \frac{2x_1}{n}$ 

 $x'_1 = -x_1^2 - (1 - x_1^2)(x_1)$ .  $x_1(0) = 1$ . Smooth function.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$S(t+\frac{2}{n})-S(t)=$$

$$S(t+\frac{2}{n})-S(t)=x_1^2(t)\frac{2}{n}$$

Select first edge,  $S \leftarrow S + \frac{2}{n}$ 



$$S(t+\frac{2}{n}) - S(t) = x_1^2(t)\frac{2}{n} + (1-x_1^2(t))\frac{2S^2(t)}{n}$$

Select first edge,  $S \leftarrow S + \frac{2}{n}$ 

Select second random edge,  $S \leftarrow S + \frac{2S^2}{n}$ 

$$S(t+\frac{2}{n}) - S(t) = x_1^2(t)\frac{2}{n} + (1-x_1^2(t))\frac{2S^2(t)}{n}$$

Select first edge,  $S \leftarrow S + \frac{2}{n}$ 

Select second random edge,  $S \leftarrow S + \frac{2S^2}{n}$ 

$$S' = -x_1^2(1) - (1 - x_1^2(t))S^2$$
.  $S(0) = 1$ . Explodes at  $t_c \sim 1.1763$ 

Theorem: (Wormald-JS) Giant Component appears at  $t_c$ .

Analogue:  $p_c$  for  $E[|C(\vec{0})|] = \infty$  same as  $p_c$  for infinite component.

Comstock grins and says, "You sound awfully sure of yourself, Waterhouse! I wonder if you can get me to feel that same level of confidence."

Waterhouse frowns at the coffee mug. "Well, it's all in the math," he says, " If the math works, why then you should be sure of yourself. That's the whole point of math."

from Cryptonomicon by Neal Stephenson